
AD-A283 545
NASA Contractor Report 194920

ICASE Report No. 94-38

* ICASE
A SCALABLE PARALLEL ALGORITHM FOR
MULTIPLE OBJECTIVE LINEAR PROGRAMS

DTIC
Malgorzata M. Wiecek LECTE
Hong Zhang

94 P 22 0 10 \' 94-26612
Contract NASI-19480 IIIEIEIIUIEIEEI
June 1994

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Mer'rt QieTsRrry!rchAssciaio

Operte by Universities Space Research Association

A SCALABLE PARALLEL ALGORITHM FOR
MULTIPLE OBJECTIVE LINEAR PROGRAMS

MALGORZATA M. WIECEK" AND HONG ZHANG t

ABSTRACT

This paper presents an ADBASE-based parallel algorithm for solving multiple ob-
jective linear programs (MOLPs). Job balance, speedup and scalability are of primary
interest in evaluating efficiency of the new algorithm. Implementation results on Intel
iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up
the process of solving MOLPs, which is understood as generating all or some efficient
extreme points and unbounded efficient edges. The algorithm gives specially good
results for large and very large problems. Motivation and justification for solving such
large MOLPs are also included.

Accesion For
INTIS CRA&I

DTIC TAB1Unannounced Q
Justification

By
Distributions

Availability Codes
i Avail and/or

Dist j Special

4 I

* Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, U.S.A.

(vaalgortclelson.clemson.edu). Research supported in part by the National Science Foundation
under contract DMS-9308605.

I Institute for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, VA 23681, U.S.A. On leave from Department of Mathematical Sciences, Clemson University,
Clemson, SC 29634, (hongsuemath.clelson.edu). Research supported by the National Aeronautics
and Space Administration under NASA Contract No. NAS1-19480.

C. * 1.l

1. Introduction. Complex decision problems related to economy, environment,
business and engineering are multidimensional and have multiple and conflicting ob-
jectives. In the presence of multiple objectives, a decision problem has to be treated
in the multicriteria decision making framework. Multiple objective programming is
concerned with generating solution sets of multiple objective problems that usually
include a large or infinite number of points referred to as efficient solutions. Those
efficient points are then the candidates for optimal solutions of the multicriteria deci-
sion making problem. Multicriteria problems are therefore naturally well structured
to be solved on parallel architectures. It has been already proven that parallel al-
gorithmns offer substantial savings in execution time, facilitate solving more complex
computational problems, and make real-time response possible for problems that were
previously considered as intractable because of their magnitude.

Several studies on the potential of using parallel processing in the field of multicri-
teria optimization have been already undertaken. Evtushenko et al. (8] recognized that
multicriteria optimization deals with one of the most sophisticated aspects of human
activity which is to achieve several goals by a single act of decision making. Driven by
this idea, they developed DISO, a dialogue system for solving optimization problems,
whose one of the main parts is the multicriteria optimization package. They also
suggested a possibility of organizing parallel calculations within this package. The
study reported by Climaco et al. [61 seems to be the first completed research task
in the area of multicriteria optimization and focuses on using parallel processing in
interactive multiple objective linear programming. Grauer and Boden [9] discussed op-
portunities in parallelization for mathematical programming problems and interactive
decision support. Ng and Yang [11] proposed to sample the efficient frontier of a mul-
tiple objective program by simultaneously solving related single criterion optimization
problems developed using the c-constraint approach [5]. A multiple reference point ap-
proach to solving multiple objective linear programs (MOLPs) was developed by Costa
and Climaco [7] and parallel processors were kept to control the reference points and
help the decision maker search for efficient and optimal solutions. Lewandowski [10]
reported parallel implementation of selected multicriteria optimization algorithms.

The field of engineering provides various applications of multicriteria optimization,
recently also implemented on parallel architectures. Chang [4] proposed a pattern
recognition approach for optimization of power systems in a multiobjective environ-
ment.

The research work reported in this paper, as a continuation of preliminary studies
reported in [15] and [16], is related to solving an MOLP which is understood as
generating all or a subset of efficient solutions of this problem. MOLPs often have a
large number of solutions in the form of extreme efficient points (EEPs) and unbounded
efficient edges [5], [12]. The process of finding all of them or even a subset of them is
very space and time consuming. Speeding up the process can be naturally supported
by new algorithms executed on parallel computers.

The availability of sequential algorithms for generating efficient points of multiple
objective programs and rising interest in parallel computations motivated to develop
a parallel algorithm for MOLPs. The structure of the efficient set of MOLPs turns
out to be very helpful in designing a parallel algorithm. Since every efficient extreme
point is connected to every other efficient extreme point by a series of efficient edges,
the process of finding efficient points can be organized so that subsets of the efficient
set can be generated simultaneously. The parallel algorithm proposed in this work is

based on ",SE [12], [13], a well known sequential computer package for solving
MOLPs.

The paper is organized as follows. In the next section the software ADBASE
is briefly presented with emphasis on several ideas for its parallelization. Some of
these ideas are discussed in more detail since they have been tested in the first stage
of this research and resulted in a basic parallel algorithm. Section 3 discusses two
strategies that significantly improved the efficiency of the basic parallel algorithm,
and includes the actual parallel algorithm. The algorithm has been implemented on
an Intel iPSC/2 and a Paragon multiprocessors for many MOLPs, focusing on large
and extremely large problems. Its efficiency and scalability have been measured and
are reported in Section 4. Incertives for dealing with laige multiple objective programs
are discussed in the same ,.., Conclusions as well as some directions for further
research are given in the ht. ' ef,. .

2. ADBASE and its bus', pxkallel algor;thm. Consider an MOLP formu-
lated as follows:

max{z = Cx x E S}

where

S = {x > 0 1 A,,,,x < b,,,,,,2X = bM2 ,A,n 3 X > bp.I,

C is an k x n matrix, A,, are 7ni x n matrices and bin, are m, x 1 vectors with
nonnegative components, i = 1,2,3. The software ADBASE generates all efficient
extreme points and unbounded efficient edges of MOLPs. A point x-0 in S is called an
efficient solution of an MOLP if there is no other point x in S such that Cx > Cxo,
with strict inequality holding for at least one component.

In general, solving an MOLP can be viewed as finding a subset of all extreme
points associated with the feasible set S, which is somehow similar to solving a linear
program with multiple solutions. ADBASE consists of three main phases. In Phase 1,
a single objective linear program (SOLP) related to the original MOLP is solved for
an initial feasible extreme point of the MOLP. Phase 2 searches for an initial efficient
extreme point (IEEP) of the problem, and Phase 3 includes generating all efficient
extreme points and unbounded efficient edges. In Phase 3, all nonbasic variables of
an IEEP are checked for feasibility and efficiency, which identifies all efficient extreme
solutions adjacent to the initial one. The feasibility and efficiency test is continued at
efficient extreme points subsequently found by performing simplex pivot operations
between a current and adjacent efficient extreme point (this operation will be referred
to as the efficient pivot operation). The bookkeeping includes storing EEPs that have
been already found and their bases (referred to as efficient bases). The process goes
on until all solutions are generated. Assigning the efficient solutions to nodes and
efficient edges to arcs, one can construct a graph (referred to as the EEP-graph) along
which the search can be performed. Since using this procedure, Phase 3 dominates
computations and searching in the graph, the parallelization is naturally started from
there.

The operation of moving from one coded basis to another is called crashing [121
and the related subroutine CRASH performs it in ADBASE. Once a processor finished
working on a current basis, it may crash to another one by performing a required

2

number of not necessarily feasible pivots that are needed to move between the two
bases.

A basic parallel algorithm presented below is based on the assumption that each
of processors searches a subgraph of the EEP-graph along the nodes and edges that
are generated by itself with minimum overlapping, so that very limited bookkeeping
has to be employed. A processor has its own list, on which efficient bases are coded as
'0' when a basis is found by itself, or as 'V when a basis is found by other processors.

Basic Parallel Algorithm:
* All processors find an identical IEEP by running Phase 1 and Phase 2 of

ADBASE.
* Statically assign the nonbasic variables of this IEEP to all processors.
* In parallel, do on all processors:

1. Examine current nonbasic variable.
2. If a new efficient basis is found, broadcast a coded message, called "list

message", to all the other processors and put it on its own list with code
'0'.

3. Check its buffer for possible new bases sent by other processors and
update its list accordingly.

4. If there is a subsequent efficient basis with code '0' on its list, crash to
it and go back to Step 1; otherwise, go to Step 5.

5. Send a "done message" to all the other processors since it has finished
examining all efficient bases found by itself.

6. Receive either "list message" or "done message" until all done messages
from the other processors have been received.

This basic parallel algorithm has been tested on an Intel iPSC/2 hypercube ma-
chine. Table 1 shows the parallel execution times for p processors as well as for
sequential ADBASE (p = 1) on 6 small testing problems. The second column of this
table specifies the number of efficient bases and EEPs. For example, problem #1 has
20 efficient bases and 17 EEPs, while problem #3 has 21 efficient bases and 21 EEPs.
Parallel execution time is determined by the slowest processor. In order to see the par-
aJlel efficiency of the algorithm, the shortest time used by a processor is listed inside
parentheses. One can see that in all cases but one, this basic parallel algorithm did
better than the sequential algorithm and more processors solved the problems faster.

TABLE I
Execution Time of the Basic Parallel Algorithm (Seconds)

Problem No. of Solutions p= 1 p =4 p = 8
#1 20bas l7ex .515 .312 (.003) .227 (.002)
#2 25bas l6ex .701 .373 (.006) .346 (.002)
#3 21 .833 .505 (.006) .412 (.002)
#4 20bas l4ex .855 .614 (.006) .450 (.007)
#5 46 4.829 1.975 (.021) 1.706 (.021)
#6 55 4.784 4.796 (.016) 2.400 (.016)

The algorithm, however, has two disadvantages. Firstly, it suffers from severe job
imbalance. Each processor examines only those efficient solutions that have been found

3

by itself. The nonbasic variables, that lead to efficient pivots, make their processors
work and progress through the graph, while the processors assigned to the nonbasic
variables that failed the efficiency test stop working and become idle even that there are
still many efficient points to be found. Secondly, the algorithm is very much dependent
upon the IEEP. An IEEP with more efficient pivots would allow more processors to
do actual work and thus result in a faster performance. It was believed that the large
time discrepancies between the slowest and the fastest processors shown in Table 1
are mainly caused by these two shortcomings of the algorithm.

3. Parallel algorithm. In this section, we shall discuss several improvements
made on the basic parallel algorithm and present a more advanced algorithm.

The advantage of parallel computation can be easily lost when the load is unbal-
anced. Very visibly, the basic parallel algorithm described in Section 2 suffers from
severe job imbalance. The nature of the MOLP makes the task of job balancing
difficult. First, subgraphs of the EEP-graph have to be searched dynamically, since
they cannot be equally distributed among processors before the execution. Second,
re-activating idle processors unavoidably increases the bookkeeping complexity, comii-
munication, as well as redundant computations. In order to have each processor work
until all the efficient points are found, the strategy, called recrashing, is proposed. The
dynamic search of the subgraphs and recrashing are now described.

In the basic parallel algorithm, if a new basis has been found, a processor normally
just sends the coded basis to all other processors. Now along with sending this, the
processor also sends a number, referred to as "work number", indicating its working
status. For example, a '0' implies the processor is still working on a basis found by
itself, 'I' is a done message, and '-1' reports that this processor has re-started and is
working on a basis sent to it. Each processor also has an integer Num.done on its list.
This number indicates how many processors are not working anymore. The program
terminates when all processors have stopped working. When a processor receives
message from other processors, it adds attached work number to its Nurn.done. For
instance, when '-1' is received by a processor, it knows that a previously idle processor
has begun to work again and decrements its Nuindone.

When a processor finished examining all bases found by itself and sent a done
message '1' to all other processors, instead of simply receiving messages and waiting
for other processors to finish their search, this processor will crash to any coming new
basis and perform the efficient pivot operation on it. If a new efficient solution is
found, its code together with the work number '-1' are sent out. The processor then
progresses from there and searches the rest of the graph. Note, when a processor
finds a new efficient solution it will not start searching from this solution until it has
finished working on its current basis. Then the processor will crash to the next basis
in its array and work from there. Thus, when an idle processor receives a new basis,
it will most likely work on this new basis prior to the processor that sent the basis.
It was conjectured that this distribution of the work should speed up the process of
solving an MOLP.

As far as the sensitivity of the basic algorithm to the initial solution is concerned,
a natural remedy is to give each processor a different initial point to work with, since
there is no guideline for generating an IEEP with more efficient pivots. For this, Phase
2 must be able to robustly provide multiple initial efficient solutions. Two approaches
were initially tried. The first one attempted was to use the random weight method

4

(RANDWEIGHT) to find the initial solutions. In the random weight method the
composite function is formed by randomly weighting objective functions of the original
MOLP and this single objective function is maximized over the original feasible set.
Relationships between MOLPs and the weighting method in general are discussed in
detail in [5], [12], and many other related publications. Applying the random weight
method in Phase 2 would then possibly lead to finding up to p different IEEPs for p
processors used. However this was not the case. Among our testing problems, the most
frequent number of IEEPs found was one and the maximum number found was three.
The other approach was to have different processors use different methods employed in
Phase 2. In general, five options for finding an IEEP are provided by ADBASE. Three
of them involve lexicographic maximization and two involve the equal weight method.

In our experiments, the equal weight method was assigned to half of the processors
and the lexicographic method to the other half (WEIGHT&LEX). A comparison of
RANDWEIGHT and WEIGHT&LEX in Phase 2 using 8 processors was conducted.
It suggested that the latter worked better in general, because in all cases it found two
different initial solutions.

The strategies discussed above, i.e., the technique of recrashing for activating idle
processors and the combination of the equal weight and the lexicographic method for
generating different IEEPs, have been tested on an Intel iPSC/2 machine. Results
on the same testing problems as in Table 1 are listed in Table 2 that includes the
execution time (in seconds) and the speedup, defined as

Execution time using I processor
Execution time using p processors*

The speedups of the basic parallel algorithm on the same problems are listed inside
the parentheses for comparison. Table 2 clearly shows that these two strategies have
significantly increased the efficiency of the basic parallel algorithm in almost all cases
even though this new version of the algorithm may involve more redundant computa-
tions.

TABLE 2
Testing Results of Proposed Strategies

p_=_4 p=8

Problem Time Speedup Time Speedup

#1 .182 2.83 (1.65) .194 2.65 (2.27)

#2 .483 1.45 (1.88) .418 1.68 (2.03)
#3 .372 2.24 (1.65) .353 2.36 (2.02)

#4 .336 2.54 (1.39) .232 3.69 (1.90)

#5 1.904 2.54 (2.45) 1.077 4.48 (2.83)

#6 1.776 2.69 (1.00) 1.022 4.68 (1.99)

The use of the two available subroutines in ADBASE, the random weight method
and lexicographic method, for generating different IEEPs was primarily for the con-
venience of initial testing, and certainly should not be recommended for a parallel
algorithm that allows concurrent execution on large number of processors. In fact, the

approach of employing different methods for solving the same initial SOLP in order

to simultaneously generate multiple IEEPs is impractical. The theory of multicriteria
optimization does not address the issue of multiple IEEPs. The number of exist-
ing methods for finding an IEEP is far less than the number of processors available.
In addition, applying different methods concurrently on multiprocessors would result
ir, programming complexity and load imbalance, which obviously prohibits practical
usage of such an approach.

After a careful study of the methods used by ADBASE, it was found that formu-
lating multiple SOLPs from the given MOLP and solving these SOLPs by the same
method would be a better approach. Actually, a small modification of ADBASE was
quite satisfactory. ADBASE is capable of performing the lexicographic maximization
process that is carried out in accordance with the recursively defined reduced feasible
regions:

so = S
S,= {!fcy dynax[cl x x xE '501

Si = {y: Cy max[c'x I E So]}

Sk = {y : cky max[ckx I x E Sk-l]},

with

In particular, the process maximizes the objective functions in the order in which
they are stored by rows in criterion matrix C. Obviously, a different maximization
process can be obtained from a reordering of the objective functions, or equivalently, a
reordering of rows in matrix C. There are k! orderings in all, a number usually much
larger than the number of processors available.

A short subroutine that permutes the rows of C was then added into ADBASE.
Experiments on all orderings for MOLPs with k objective functions show that the
orderings:

so = S
S1 = {y : Cy = max[c'a I x E So]}S2 = { ..

i = 1,--., k, are guaranteed to generate k different IEEPs. That is, different sets
S in this process are guaranteed to produce different IEEPs. When the solution
in 51 is unique, changing the orderings of objective functions in subsequent sets Si,
i = 2,... , k, makes no difference in IEEPs produced, which has occurred in the test.

Incorporating the two techniques: recrashing and producing multiple IEEPs by
means of the lexicographic process resulted in the final parallel algorithm. Step I of the
algorithm below refers to an SOLP related to the MOLP being solved. This SOLP

6

is originally formulated in Phase 2 of ADBASE, now equipped with the additional
subroutine permuting the rows of C.

Parallel Algorithm for MOLPs:
* In parallel, do on each of processors Pi, i = 1,... , p, until Num-done = p:

1. Formulate an SOLP from the given MOLP. Find an IEEP by solving
this SOLP.
Initialize Num-done := 0.

2. Follow Steps 1-5 of the Basic Parallel Algorithm.
3. Receive messages from other processors and update its own list.
4. When a new coded basis is received:

Crash to and do efficient pivot operation on it.
If the basis leads to a new efficient solution:

send its code with the work number '-1' to all other processors;
go back to Step 2.

Otherwise, go to Step 3.
This parallel algorithm has been implemented on the Intel Paragon multiprocessor

at NASA Langley Research Center. Experimental results are given in the next section.

4. Numerical results. Parallel algorithms are developed for solving computa-
tionally extensive problems. The speedup, efficiency and scalability are important
criteria in the performance evaluation. The scalability referred to in this paper is
understood as the following feature of the algorithm: when the problem size increases
linearly with the number of processors, the achieved efficiency of the algorithm, defined
as

speedup on p processors
(2) efficiency := P

is maintained. Clearly, the testing problems should consist of MOLPs whose size is
scaled with the number of processors. Fortunately, using ADBASE, almost any prob-
lem of desired size can be generated by specifying the number of objective functions
(k), number of structural variables (n), and number of constraints (mi).

An interesting phenomenon initially observed is that the number of EEPs grows
rapidly as k + n + ml, sum of the parameters, increases. For example, the solution sets
could grow by several thousand when the number of objective functions is inct'emented
by one. Similar observations were reported in [14], where random problem generation
for creating MOLP test problems was discussed.

In general, an MOLP may have a huge number of solutions, which is beyond
capability of data processing or exceeds the machine memory capacity. In this situa-
tion, finding all efficient solutions is no longer practical and the goal of generating all
EEPs could be questioned. However, in the presence of a large number of EEPs, the
solution process of MOLPs goes further and involves maximizing a decision maker's
overall utility function over the efficient set in order to obtain a (possibly unique) most
preferred solution. Optimization over the efficient set has recently become a direction
of very active research. In fact, optimizing a linear function over the efficient set of
an MOLP is already a difficult global optimization problem and requires numerically
intensive algorithms. Studies in this direction, yielding exact or heuristic algorithms,
were carried out by Benson [1] [2], Benson and Sayin [3], and others. While exact

7

TABLE 3

Ezecution Time (Seconds)

Problem No. of Solutions p= 1 p=2 p=4 p= 8

#7 58 0.7724 0.4951 0.3573 0.3852
#8 129 1.9827 1.0944 0.6551 0.6988
#9 251bas 234ex 5.0659 2.7440 1.8469 1.0997

#10 424bas 402ex 13.4987 7.3755 5.1234 2.7138
#11 818 32.6500 17.0657 9.4557 6.1187
#12 1512bas 1473ex 89.7754 46.9689 25.3096 17.9618
#13 3119 146.1361 76.0051 43.0819 23.7395

TABLE 4
Speedup

Problem No. of Solutions p = 2 p =4 p = 8
#7 58 1.56 2.16 2.01
#8 129 1.81 3.03 2.84
#9 251bas 234ex 1.85 2.74 4.61

#10 424bas 402ex 1.83 2.63 4.97
#11 818 1.91 3.45 5.34
#12 1512bas 1473ex 1.91 3.55 5.00
#13 3119 1.92 3.39 6.16

algorithms entail heavy computational burden, heuristics offer only estimates of the
global solution. Given the availability of fast parallel algorithms for MOLPs, complete
enumeration of EEPs, previously considered impractical for larger problems, seems to
be competitive with the specially designed algorithms. The global solution obviously
depends on the choice of the utility function and as such it cannot be determined
uniquely. Selection of the utility function is a difficult task usually performed by a
decision maker, who can make a better choice if more information i•bout the efficient
set is available. Therefore, ability to find a subset of the efficient set within a given
time period is of great importance, as it may contribute to the decision maker's learn-
ing pyocess about the efficient frontier. Using that partial information, the decision
maker can modify the utility function that will better represent his/her preferences.

In this paper, MOLPs that involve more than 5 thousand EEPs are classified as
extremely large problems. Accordingly, for small and large MOLPs, the goal is to
generate all EEPs as fast as possible; otherwise, to find as many solutions as possible
within a given time period.

Table 3, constructed in the same fashion as Table 1, shows the parallel execution
times on the Intel Paragon machine on 7 testing problems. The problems are selected
so that their sizes, measured by the total number of efficient bases, are linearly scaled
with the number of processors being used. Table 4 lists the speedup for the same
testing problems and Figure 1 depicts the parallel efficiency defined by Eq.(2) for all
the problems tested in the experiments.

0.4 s oidI.n P-2

S .dashed im: p-4

0-2- doled I*,: p-8

0 010• 10z 10 1"

The structure of the EEP-graph suggests that, when an MOLP includes more so-
lutions to be found, the chances of splitting the work between processors will increase,
because there is less chance for more than one processor to be terminated at the same
time and thus, to recrash to the same solution. Therefore the algorithm is inherently
scalable, which has been confirmed by the experiments. Note the three stars marked
in Figure 1. They indicate that the efficiency of the algorithm has been maintained
when the total number of solutions generated increased linearly with the number of
processors employed. In addition, for a fixed number of processors, the efficiency of
the parallel algorithm went up quickly to its optimum when the number of solutions
of MOLPs increased, as illustrated in Figure 1.

The implementation results on extremely large MOLPs are presented in Table 5.
These problems involve huge numbers of solutions, so they are identified by the input
parameters used in the problem generator of ADBASE. Three groups of testing prob-
lems were chosen. The problems in each group are defined over the same feasible set,
specified by (n, ml), and are listed in the ascending order according to their number
of objective functions. Solutions were found in 30 seconds using p processors. All the
rows of this table show that, in general, more solutions were generated simultaneously
when more processors were used. Since the speedup defined by Eq.(1) is based on the
execution time spent on generating all efficient solutions and is no longer valid for the
performance evaluation in this situation, the ratio, defined as

)ratio number of solutions found by p processors
number of solutions found by 1 processor

is then used. The ratio actually measures the speedup of the computation process
in terms of the number of solutions found within a given time period. Table 6 lists
the ratios computed from the data in Table 5. For the given (n, ml) as parameters
of a feasible set, the ratios in most of the columns of Table 6 increase steadily with
the number of objective functions, indicating once again that the algorithm generally
performs better on larger problems and is well scalable. Note that the number of
solutions generated by 32 processors can be as large as 27 times of the number of
solutions found by 1 processor in the same time period.

5. Conclusions. This paper presents pioneering research on designing a parallel
algorithm for MOLPs based on the sequential software ADBASE and implementing it
on an Intel iPSC/2 and a Paragon multiprocessors. The paper first reports a straight-
forward approach in the form of basic parallel algorithm. In the subsequent research,
the techniques of re-activating idle processors and generating multiple IEEPs have
been proposed. The resulting parallel algorithm has been applied to large and very
large MOLPs. All experiments show that this parallel algorithm significantly speeds
up the process of finding efficient solutions of MOLPs. Furthermore, the algorithm is
well scalable, which is considered a very important feature of parallel algorithms. The
algorithm is also very well suited for a wide range of parallel computers and it is not

9

TABLE 5

Number of Solutions Found (in 30 Seconds)

(n,m1) k p= I p=2 p=4 p=8 p= 16 p=32
16 120 142 179 264 439 499

(100,30) 24 49 83 127 221 369 535
32 23 40 82 194 332 628

16 87 133 264 334 510 564
(80,67) 24 61 73 126 196 406 598

32 32 74 101 180 348 671

16 18 20 33 35 35 35
(150,50) 24 9 12 32 34 34 44

32 5 13 24 27 27 42

TABLE 6
Ratio

(n, ml) k p=2 p=4 p= 8 p=16 p=32
16 1.18 1.49 2.20 3.66 4.16

(100,30) 24 1.69 2.59 4.51 7.53 10.92
32 1.74 3.57 8.43 14.43 27.30
16 1.53 3.03 3.84 5.86 6.48

(80,67) 24 1.20 2.07 3.21 6.66 9.80
1 32 2.31 3.16 5.63 12.00 20.97

16 1.11 1.83 1.94 1.94 1.94
(150,50) 24 1.33 3.56 3.78 3.78 4.89

32 2.60 4.80 5.40 5.40 8.40

10

specific to the distributed multiprocessors on which it was tested.
Although the literature on MOLPs is very rich and diverse, computational issues

of these problems have not been widely investigated. A secondary product of this
research is the report on the numbers of EEPs possessed by MOLPs of large and
very large sizes as well as on mutual relationships between the number of objective
functions, variables, and constraints.

Additionally, the current structure of ADBASE heavily affects this algorithm and
leaves space for further improvement. For instance, since ADBASE does not keep track
of infeasible or inefficient bases, currently in the parallel algorithm multiple processors
repeatedly check the same infeasible or inefficient bases, which generates redundant
computations. If bookkeeping of inefficient bases was maintained, the communication
between processors could be set up for transmitting the additional information about
efficient and inefficient bases. On the other hand, ADBASE is a versatile package that
can solve a range of linear optimization problems, i.e. pre-emptive goal programming,
MOLPs with interval criterion weights, and point estimate weighted-sum problems.
The current parallel algorithm could be further modified and extended to handle some
of the other options ADBASE offers.

The ultimate goal of any research in the area of multicriteria optimization is
to design new tools supporting decision making. In the course of this process, the
decision maker usually interactively examines the efficient set and chooses a most
preferred efficient solution as the optimal one. Optimizing decision maker's preferences
over the efficient set, although in general considered a difficult problem, has been
more attractive than generating all efficient points by means of traditional sequential
algorithms. The research presented in this paper shows that parallel algorithms can
substantially alleviate this tedious process and make enumeration of efficient points a
decision aid for multicriteria decision making.

REFERENCES

[1] H. P. BENSON, An all-linear programming relaxation algorithm for optimizing over the efficient
set, Journal of Global Optimization, 1 (1991), pp. 83-104.

[2] -, A finite, nonadjacent extreme-point search algorithm for optimization over the efficient
set, Journal of Optimization Theory and Applications, 73 (1992), pp. 47-64.

[3] H. P. BENSON AND S. SAYIN, A face search heuristic algorithm for optimizing over the
efficient set, Naval Research Logistics, 40 (1993), pp. 103-116.

[4] C. S. CHANG, Co-ordinated static and dynamic monitoring and optimization of power systems
using a parallel architecture and pattern recognition techniques, IEEE Proceedings - C, 139
(1992), pp. 197-204.

[5] V. CHANKONG AND Y. Y. HAIM&S, Multiobjective Decision Making - Theory and Methodology,
North-Holland, New York, 1983.

[6] J. N. CLIMACO, J. P. COSTA, C. ANTUNES, AND M. J. ALVES, Parallel processing in molp
method base development - discussion using two case studies, Paper presented at the IX-th
International Conference on Multiple Criteria Decision Making, Fairfax, VA, (1990).

[7] J. P. COSTA AND J. N. CLIMACO, A multiple reference point parallel approach in mcdm, Pro-
ceedings of the Tenth International Conference on Multiple Criteria Decision Making, Taipei,
3 (1992), pp. 265-272.

[8] Y. EVTUSHENKO, V. MAZOURIK, AND V. RATKIN, Multicriteria optimization in the diso system,
Optimization, Parallel Processing and Application, eds: A. Kurzhanski, K. Neumann and
D. Pallaschke, Springer-Verlag, Berlin, (1988), pp. 94-102.

[9] M. GRAUER AND H. BODEN, Opportunities on parallel and distributed computation for optimiza-
tion and decision support, Proceedings of the Tenth International Conference on Multiple
Criteria Decision Making, Taipei, 1 (1992), pp. 197-207.

11

[10] A. LEWANDOWSKI, Parallel implementation of selected MCDM algorithms, Paper presented at
the TIMS/ORSA Joint National Meeting, Chicago, (1993).

[11 W. Y. N; AND J. YANG, Interactive sampling of efficient frontier in multi - objective program-
rming by parallel distributed computation, Proceedings of the Tenth International Conference
on Multiple Criteria Decision Making, Taipei, 2 (1992), pp. 325-334.

[12] R. E. STEUER, Multiple Criteria Optimization - Theory, Computation and Application, John
Wiley, New York, 1986.

[13] - , Manual for the adbase multiple objective linear programming package, Department of Man-
agement Science and Information Technology, University of Georgia, Athens, GA, (1991).

[14] - , Random problem generation and the computation of efficient extreme points in multiple
objective linear programming, private communication, (1993).

[15] M. M. WIECEK, H. ZHANG, J. L. MATTHEWS, AND J. R. SOLTYS, A parallel algorithm for mul-
tiple objective linear programs, to appear in Proceedings of the XI International Conference
on MCDM, Coimbra, Portugal, (1994).

[161 H. ZHANG AND M. M. WIECEK, Solving multiple objective linear programs on the Intel Paragon,
to appear in Proceedings of Mardi Gras '94 Conference: Toward Teraflop Computing and
New Grand Challenge Applications, Baton Rouge, Louisiana, (1994).

12

Form ApprovedREPORT DOCUMENTATION PAGE oMB No 07o0o0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information. including suggestions for reducing this burden, to Washington Headquarters Services. Directoratt ior Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503

I. AGENCY USE ONLY(Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED

I June 1994 I Contractor Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A SCALABLE PARALLEL ALGORITHM FOR MULTIPLE
OBJECTIVE LINEAR PROGRAMS C NASI-19480

WU 505-90-52-01

6. AUTHOR(S)

Malgorzata M. Wiecek
Hong Zhang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering ICASE Report No. 94-38
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-194920
Hampton, VA 23681-0001 ICASE Report No. 94-38

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
Submitted to Computational Optimization and Applications

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited
Subject Category 61

13. ABSTRACT (Maximum 200 words)
This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLPs).
Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm.
Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds
up the process of solving MOLPs, which is understood as generating all or some efficient extreme 1,oints and
unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation
and justification for solving such large MOLPs are also included.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Multiple objective linear program, efficient solution, ADBASE, parallel efficiency, 14
scalability 16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified

ISN TS40-01-280-5500 Standard Form 29B(Rev. 2.89)
Prescribed by ANSI Std. Z39-18
298-102

